Graduate Aptitude Test-Biotechnology

Graduate Aptitude Test-Biotechnology

GAT B 2025 - exam_syllabus

National exam for PG biotechnology admissions in DBT-supported institutions.

Candidates are required to check the syllabus for their preparation of the examination. Candidates can get the GAT B syllabus at the official website. The question paper consist of two sections, they are:

Section A:

In Section A the level of the questions are 10+2 in the subjects Physics, Chemistry, Mathematics and Biology.

Section B:

In Section B there will be multiple choice questions at graduate level. There will be questions from basic biology, life sciences, biotechnology.

Section A

Section Subject
Section A Physics, Chemistry, Mathematics and Biology at 10+2 level

Section B

Topics Subtopics
Biomolecules structure and functions; Biological membranes, structure, action potential and transport processes; Enzymes- classification, kinetics and mechanism of action; Basic concepts and designs of metabolism (carbohydrates, lipids, amino acids and nucleic acids) photosynthesis, respiration and electron transport chain; Bioenergetics.
Viruses structure and classification; Microbial classification and diversity (bacterial, algal and fungal); Methods in microbiology; Microbial growth and nutrition; Aerobic and anaerobic respiration; Nitrogen fixation; Microbial diseases and host-pathogen interaction.
Prokaryotic and eukaryotic cell structure Cell cycle and cell growth control; Cell-Cell communication, Cell signalling and signal transduction.
Molecular structure of genes and chromosomes Mutations and mutagenesis; Nucleic acid replication,
transcription, translation and their regulatory mechanisms in prokaryotes and eukaryotes; Mendelian inheritance; Gene interaction; Complementation; Linkage, genetics (plasmids, transformation, transduction, conjugation); Horizontal gene transfer and Transposable elements; RNA interference; DNA damage and repair; Chromosomal variation; Molecular basis of genetic diseases.
Principles of microscopy light, electron, fluorescent and confocal; Centrifugation- high speed and ultra; Principles of spectroscopy-UV, visible, CD, IR, FTIR, Raman, MS, NMR; Principles of chromatography- ion exchange, gel filtration, hydrophobic interaction, affinity, GC, HPLC, FPLC; Electrophoresis; Microarray.
History of Immunology Innate, humoral and cell mediated immunity; Antigen; Antibody structure and function; Molecular basis of antibody diversity; Synthesis of antibody and secretion; Antigen-antibody reaction; Complement; Primary and secondary lymphoid organ; B and T cells and macrophages; Major histocompatibility complex (MHC); Antigen processing and presentation; Polyclonal and monoclonal antibody; Regulation of immune response; Immune tolerance; Hypersensitivity; Autoimmunity; Graft versus host reaction.
Major bioinformatics resources and search tools Sequence and structure databases; Sequence analysis (bimolecular sequence file formats, scoring matrices, sequence alignment, phylogeny); Data mining and analytical tools for genomic and proteomic studies; Molecular dynamics and simulations (basic concepts including force fields, protein-protein, protein-nucleic acid, protein- ligand interaction).
Restriction and modification enzymes Vectors; plasmid, bacteriophage and other viral vectors, cosmids, Ti plasmid, yeast artificial chromosome; mammalian and plant expression vectors; cDNA and genomic DNA library; Gene isolation, cloning and expression; Transposons and gene targeting; DNA labelling; DNA sequencing; Polymerase chain reactions; DNA fingerprinting; Southern and northern blotting; In- situ hybridization; RAPD, RFLP; Site-directed mutagenesis; Gene transfer technologies; Gene therapy.
Totipotency Regeneration of plants; Plant growth regulators and elicitors; Tissue culture and Cell suspension culture system: methodology, kinetics of growth and, nutrient optimization
Production of secondary metabolites by plant suspension cultures Hairy root culture; transgenic plants; Plant products of industrial importance.
Animal cell culture media composition and growth conditions; Animal cell and tissue preservation; Anchorage and non-anchorage dependent cell culture; Kinetics of cell growth; Micro & macro-carrier culture; Hybridoma technology; Stem cell technology; Animal cloning; Transgenic animals.
Chemical engineering Chemical engineering principles applied to biological system, Principle of reactor design, ideal and non- ideal multiphase bioreactors, mass and heat transfer; Rheology of fermentation fluids, Aeration and agitation; Media formulation and optimization; Kinetics of microbial growth, substrate utilisation and product formation; Sterilisation of air and media; Batch, fed-batch and continuous processes; Various types of microbial and enzyme reactors; Instrumentation control and optimization; Unit operations in solid-liquid separation and liquid-liquid extraction; Process scale-up, economics and feasibility analysis.
Engineering principle of bioprocessing - Upstream production and downstream; Bioprocess design and development from lab to industrial scale; Microbial, animal and plant cell culture platforms; Production of biomass and primary/secondary metabolites; Biofuels, Bioplastics, industrial enzymes, antibiotics; Large scale production and purification of recombinant proteins; Industrial application of chromatographic and membrane based bioseparation methods; Immobilization of biocatalysts (enzymes and cells) for bioconversion processes; Bioremediation-Aerobic and anaerobic processes for stabilisation of solid / liquid wastes.
Tissue culture and its application Micropropagation. Meristem culture and production of virus-free plants. Another and microspore culture. Embryo and ovary culture. Protoplast isolation. Protoplast fusion-somatic hybrids, cybrids. Somaclones, Synthetic seeds. In vitro germplasm conservation. Cryopreservation. Organelle DNA, Satellite-and repetitive DNAs. DNA repair. Regulation of gene expression. Recombinant DNA technology-cloning vectors, restriction enzymes, gene cloning. Methods of gene transfer in plants. Achievements and recent developments of genetic engineering in agriculture. Development of transgenics for biotic & abiotic stress tolerance, bioethics, terminator technology, nanotechnology, DNA fingerprinting, gene
silencing.